
www.manaraa.com

OV Overview of ComputationalScienceCopyright (C) October 1991, Computational Science Education Project1 IntroductionComputational science is about using computers to analyze scienti�c problems. It is distinctfrom computer science, which is the study of computers and computation, and it is di�erentfrom theory and experiment, the traditional forms of science, in that it seeks to gain un-derstanding principally through the analysis of mathematical models on high performancecomputers. The term computational scientist has been coined to describe scientists, engi-neers and mathematicians who apply high performance computer technology in innovativeand essential ways to advance the state of knowledge in their respective disciplines. More re-cently, computational science has begun to make inroads into other areas such as economics,music and visual arts.The computational approach to doing science is inherently multidisciplinary: it requiresof its practitioners a �rm grounding in applied mathematics and computer science in additionto a command of one or more scienti�c disciplines. As might be expected, this new approachto science thrives on the leading edges of the various disciplines and, in fact, helps to breakdown and redraw their boundaries. Thus it is truly interdisciplinary. At this point in theirdevelopment, the computational approaches to science and engineering are virtually indis-tinguishable from one another|the techniques and tools used by computational scientistsdi�er little from those used by computational engineers|so we use the term \computationalscience" as a convenient shorthand for \computational science and engineering."Computational science has emerged as a powerful and indispensable method of analyzinga variety of problems in research, product and process development, and many aspects ofmanufacturing. Computational inquiry, in the form of numeric simulation, is increasinglyaccepted as a third basic scienti�c methodology, complementing theory and experimentationin engineering and scienti�c research. Numeric simulations �ll the gap between physicalexperiments and analytical approaches. Numeric simulations provide both qualitative andquantitative insights into many phenomena that are too complex to be dealt with by analyt-ical methods and too expensive or dangerous to study via experiments. Some studies, suchas nuclear repository integrity and global climate change, involve time scales that precludethe use of realistic physical experiments. Additional support for numeric simulation stems

www.manaraa.com

from the increasing frequency with which simulations are providing results of comparableaccuracy to physical experiments.Computational science is a new paradigm that provides the opportunity for looking atproblems in new ways. Its essential uses are two: resolving outstanding issues, to whichconventional approaches have proven inadequate, and formulating and investigating newquestions which would not even be asked in the absence of computational science. It is cur-rently at the leading edge of science and engineering. However, as its supporting computingand communications technologies pervade our society, computational science will ultimatelybe put to many uses.Computational science has developed much like a complex organism. It was born inthe 1940s, cutting its teeth on the ballistics and nuclear weapons design problems of WorldWar II. It went through its adolescence during the 1970s and 80s, where it began making anindustrial impact in �elds such as commercial aircraft design. It is just now reaching its primeof life and is poised to take advantage of rapidly developing computing and communicationsinfrastructure to secure its role as a major contributor to national and world economies.This timing is opportune. We are at a point, late in the industrial revolution, wherefurther re�nements to our current systems are costly and yield small returns. The conven-tional approaches to problem solving, theory and experiment, are quite mature. Most ofthe problems which are tractable by these approaches have already yielded to them. Yetwe are faced with a growing number of complex issues which require immediate attention,ranging from securing future sources of energy through managing a highly interdependentcollection of national economies to understanding the impact of human activity on our globalenvironment.The transformation of computational science from an opportunity to a reality is beingfacilitated in a number of ways. Wilson's concept of a \grand challenge" has been broadlyaccepted and is now the common descriptor for forefront problems in engineering and sci-ence which require high-end computing resources for their solution [6]. The Department ofEnergy has recently created two High Performance Computing Research Centers to serve asintellectual homes for selected grand challenges and to conduct, manage and integrate theresearch activities necessary to enable progress toward their solution.There is increasing awareness that the scale and scope of the problems which computa-tional science will ultimately address is such that success is dependent on the establishmentof e�ective collaborations among government, academia and industry. It is only through acommon, coordinated e�ort that adequate resources and skills can be brought to bear onsuch problems.Various applications disciplines are at di�erent stages in their assimilation of computa-tional science. Some, like aerodynamics, have fully integrated it into their culture. Others,like oceanography, have recently begun to recognize its potential as a consequence of pio-neering e�orts, such as global ocean modeling. In still other disciplines, such as many of thelife sciences, much work remains to be done in determining the role of computational sci-ence. Despite the varying degrees to which computational science has currently penetratedparticular applications disciplines, the evidence that it will have a fundamental impact on2

www.manaraa.com

Table 1: Applications of Computational ScienceEstablished EmergingComputational Fluid BiologyDynamicsAtmospheric Science EconomicsSeismology MaterialsResearchStructural Analysis Medical ImagingChemistry Animal ScienceMagnetohydrodynamicsReservoir ModelingGlobal Ocean ModelingEnvironmental StudiesNuclear Engineeringvirtually all disciplines is clear.2 Computational Science 6= Computer ScienceComputational science should not be confused with computer science. Computer scienceis the study of algorithms, languages, and machines for solving problems. It is related to,but distinct from, computer engineering, which focuses on the design and construction ofcomputing machines.Computational science focuses on a scienti�c or engineering problem and draws fromcomputer science and mathematics to gain an improved understanding of the problem area.Even though computational science is quite distinct frommost present day computer science,many of the topics typically considered to be in the domain of computer science are of muchvalue to the computational scientist. For example, when choosing a numerical algorithm tomap to a particular computer architecture, the computational scientist must be aware offundamental issues from areas such as data structures and software design.The �rst requirement of a computational scientist is to have command of an applieddiscipline. The e�ective computational scientist must also be familiar with leading edgecomputer architectures and the data structure issues associated with those architectures. A3

www.manaraa.com

Applied

Disciplines

MathematicsComputer

Science

Computational
Science

Figure 1: Computational Sciencecomputational scientist must have a good understanding of both the analysis and implemen-tation of numerical algorithms and the ways that algorithms map to data structures andcomputer architectures. Recently, scienti�c visualization for the preprocessing of data setsand the interrogation of massive amounts of computational results has become an essentialtool of the computational scientist.Thus a computational scientist works in the intersection of (1) an applied discipline;(2) computer science; and (3) mathematics. Computational science is a blending of thesethree areas to obtain a better understanding of some phenomena through a judicious matchbetween the problem, a computer architecture, and algorithms.3 A Brief History of Computational ScienceA complete history of computing would include a multitude of diverse devices such as theancient Chinese abacus, the Jacquard loom (1805) and Charles Babbage's \analytical en-gine" (1834). It would also include discussion of mechanical, analog and digital computingarchitectures. As late as the 1960s, mechanical devices, such as the Marchant calculator, stillfound widespread application in science and engineering. During the early days of electroniccomputing devices, there was much discussion about the relative merits of analog vs. digitalcomputers. In fact, as late as the 1960s, analog computers were routinely used to solvesystems of �nite di�erence equations arising in oil reservoir modeling.In the end, digital computing devices proved to have the power, economics and scalabil-ity necessary to deal with large scale computations. Digital computers now dominate thecomputing world in all areas ranging from the hand calculator to the supercomputer andare pervasive throughout society. Therefore, this brief sketch of the development of scienti�ccomputing is limited to the area of digital, electronic computers.4

www.manaraa.com

The evolution of digital computing is often divided into generations. Each generationis characterized by dramatic improvements over the previous generation in the technologyused to build computers, the internal organization of computer systems, and programminglanguages. Although not usually associated with computer generations, there has been asteady improvement in algorithms, including algorithms used in computational science. Thefollowing history has been organized using these widely recognized generations as mileposts.3.1 The Mechanical Era (1623{1945)The idea of using machines to solve mathematical problems can be traced at least as far asthe early 17th century. Mathematicians who designed and implemented calculators that werecapable of addition, subtraction, multiplication, and division included Wilhelm Schickhard,Blaise Pascal,1 and Gottfried Leibnitz.The �rst multi-purpose, i.e. programmable, computing device was probably Charles Bab-bage's Di�erence Engine, which was begun in 1823 but never completed. A more ambitiousmachine was the Analytical Engine. It was designed in 1842, but unfortunately it also wasonly partially completed by Babbage. Babbage was truly a man ahead of his time: manyhistorians think the major reason he was unable to complete these projects was the fact thatthe technology of the day was not reliable enough. In spite of never building a completeworking machine, Babbage and his colleagues, most notably Ada,2 Countess of Lovelace, rec-ognized several important programming techniques, including conditional branches, iterativeloops and index variables.A machine inspired by Babbage's design was arguably the �rst to be used in computa-tional science. George Scheutz read of the di�erence engine in 1833, and along with his sonEdvard Scheutz began work on a smaller version. By 1853 they had constructed a machinethat could process 15-digit numbers and calculate fourth-order di�erences. Their machinewon a gold medal at the Exhibition of Paris in 1855, and later they sold it to the DudleyObservatory in Albany, New York, which used it to calculate the orbit of Mars.One of the �rst commercial uses of mechanical computers was by the US Census Bureau,which used punch-card equipment designed by Herman Hollerith to tabulate data for the1890 census. In 1911 Hollerith's company merged with a competitor to found the corporationwhich in 1924 became International Business Machines.3.2 First Generation Electronic Computers (1937{1953)Three machines have been promoted at various times as the �rst electronic computers. Thesemachines used electronic switches, in the form of vacuum tubes, instead of electromechanical1Pascal's contribution to computing was recognized by computer scientist Nicklaus Wirth, who in 1972named his new computer language Pascal (and insisted that it be spelled Pascal, not PASCAL).2Another pioneer with a programming language named after her. Naming languages after mathematiciansis somewhat of a tradition in computer science. Other such languages include Russel, Euclid, Turning, andGoedel. 5

www.manaraa.com

relays. In principle the electronic switches would be more reliable, since they would have nomoving parts that would wear out, but the technology was still new at that time and thetubes were comparable to relays in reliability. Electronic components had one major bene�t,however: they could \open" and \close" about 1,000 times faster than mechanical switches.The earliest attempt to build an electronic computer was by J. V. Atanaso�, a professorof physics and mathematics at Iowa State, in 1937. Atanaso� set out to build a machine thatwould help his graduate students solve systems of partial di�erential equations. By 1941 heand graduate student Cli�ord Berry had succeeded in building a machine that could solve 29simultaneous equations with 29 unknowns. However, the machine was not programmable,and was more of an electronic calculator.A second early electronic machine was Colossus, designed by Alan Turing for the Britishmilitary in 1943. This machine played an important role in breaking codes used by theGerman army in World War II. Turing's main contribution to the �eld of computer sciencewas the idea of the Turing machine, a mathematical formalism widely used in the study ofcomputable functions. The existence of Colossus was kept secret until long after the warended, and the credit due to Turing and his colleagues for designing one of the �rst workingelectronic computers was slow in coming.The �rst general purpose programmable electronic computer was the Electronic Numer-ical Integrator and Computer (ENIAC), built by J. Presper Eckert and John V. Mauchly atthe University of Pennsylvania. Work began in 1943, funded by the Army Ordnance Depart-ment, which needed a way to compute ballistics during World War II. The machine wasn'tcompleted until 1945, but then it was used extensively for calculations during the designof the hydrogen bomb. By the time it was decommissioned in 1955 it had been used forresearch on the design of wind tunnels, random number generators, and weather prediction.Eckert, Mauchly, and John von Neumann, a consultant to the ENIAC project, beganwork on a new machine before ENIAC was �nished. The main contribution of EDVAC,their new project, was the notion of a stored program. There is some controversy over whodeserves the credit for this idea, but none over how important the idea was to the futureof general purpose computers. ENIAC was controlled by a set of external switches anddials; to change the program required physically altering the settings on these controls.These controls also limited the speed of the internal electronic operations. Through theuse of a memory that was large enough to hold both instructions and data, and using theprogram stored in memory to control the order of arithmetic operations, EDVAC was able torun orders of magnitude faster than ENIAC. By storing instructions in the same medium asdata, designers could concentrate on improving the internal structure of the machine withoutworrying about matching it to the speed of an external control.Regardless of who deserves the credit for the stored program idea, the EDVAC project issigni�cant as an example of the power of interdisciplinary projects that characterize moderncomputational science. By recognizing that functions, in the form of a sequence of instruc-tions for a computer, can be encoded as numbers, the EDVAC group knew the instructionscould be stored in the computer's memory along with numerical data. The notion of us-ing numbers to represent functions was a key step used by Goedel in his incompleteness6

www.manaraa.com

theorem in 1937, work which von Neumann, as a logician, was quite familiar with. VonNeumann's background in logic, combined with Eckert and Mauchly's electrical engineeringskills, formed a very powerful interdisciplinary team.Software technology during this period was very primitive. The �rst programs werewritten out in machine code, i.e. programmers directly wrote down the numbers that cor-responded to the instructions they wanted to store in memory. By the 1950s programmerswere using a symbolic notation, known as assembly language, then hand{translating thesymbolic notation into machine code. Later programs known as assemblers performed thetranslation task.As primitive as they were, these �rst electronic machines were quite useful in appliedscience and engineering. Atanaso� estimated that it would take eight hours to solve a setof equations with eight unknowns using a Marchant calculator, and 381 hours to solve 29equations for 29 unknowns. The Atanaso�-Berry computer was able to complete the taskin under an hour. The �rst problem run on the ENIAC, a numerical simulation used inthe design of the hydrogen bomb, required 20 seconds, as opposed to forty hours usingmechanical calculators. Eckert and Mauchly later developed what was arguably the �rstcommercially successful computer, the UNIVAC; in 1952, 45 minutes after the polls closedand with 7% of the vote counted, UNIVAC predicted Eisenhower would defeat Stevensonwith 438 electoral votes (he ended up with 442).3.3 Second Generation (1954{1962)The second generation saw several important developments at all levels of computer systemdesign, from the technology used to build the basic circuits to the programming languagesused to write scienti�c applications.Electronic switches in this era were based on discrete diode and transistor technologywith a switching time of approximately 0.3 microseconds. The �rst machines to be built withthis technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's LincolnLaboratory. Memory technology was based on magnetic cores which could be accessed inrandom order, as opposed to mercury delay lines, in which data was stored as an acousticwave that passed sequentially through the medium and could be accessed only when thedata moved by the I/O interface.Important innovations in computer architecture3 included index registers for controllingloops and oating point units for calculations based on real numbers. Prior to this accessingsuccessive elements in an array was quite tedious and often involved writing self-modifyingcode (programs which modi�ed themselves as they ran; at the time viewed as a powerfulapplication of the principle that programs and data were fundamentally the same, thispractice is now frowned upon as extremely hard to debug and is impossible in most highlevel languages). Floating point operations were performed by libraries of software routinesin early computers, but were done in hardware in second generation machines.3The term \computer architecture" generally refers to aspects of a computer's internal organization thatare visible to programmers or compiler writers; see Chapter CA.7

www.manaraa.com

During this second generation many high level programming languages were introduced,including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercialmachines of this era include the IBM 704 and its successors, the 709 and 7094. The latterintroduced I/O processors for better throughput between I/O devices and main memory.The second generation also saw the �rst two supercomputers designed speci�cally fornumeric processing in scienti�c applications. The term \supercomputer" is generally reservedfor a machine that is an order of magnitude more powerful than other machines of its era.Two machines of the 1950s deserve this title. The Livermore Atomic Research Computer(LARC) and the IBM 7030 (aka Stretch) were early examples of machines that overlappedmemory operations with processor operations and had primitive forms of parallel processing.3.4 Third Generation (1963{1972)The third generation brought huge gains in computational power. Innovations in this erainclude the use of integrated circuits, or ICs (semiconductor devices with several transistorsbuilt into one physical component), semiconductor memories starting to be used instead ofmagnetic cores, microprogramming as a technique for e�ciently designing complex proces-sors, the coming of age of pipelining and other forms of parallel processing (described indetail in Chapter CA), and the introduction of operating systems and time-sharing.The �rst ICs were based on small-scale integration (SSI) circuits, which had around 10devices per circuit (or \chip"), and evolved to the use of medium-scale integrated (MSI)circuits, which had up to 100 devices per chip. Multilayered printed circuits were developedand core memory was replaced by faster, solid state memories.Computer designers began to take advantage of parallelism by using multiple functionalunits, overlapping CPU and I/O operations, and pipelining (internal parallelism) in boththe instruction stream and the data stream. In 1964, Seymour Cray developed the CDC6600, which was the �rst architecture to use functional parallelism. By using 10 separatefunctional units that could operate simultaneously and 32 independent memory banks, theCDC 6600 was able to attain a computation rate of 1 million oating point operations persecond (1 Mops). Five years later CDC released the 7600, also developed by SeymourCray. The CDC 7600, with its pipelined functional units, is considered to be the �rst vectorprocessor and was capable of executing at 10 Mops. The IBM 360/91, released during thesame period, was roughly twice as fast as the CDC 660. It employed instruction look ahead,separate oating point and integer functional units and pipelined instruction stream. TheIBM 360{195 was comparable to the CDC 7600, deriving much of its performance from avery fast cache memory.The SOLOMON computer, developed by Westinghouse Corporation, and the ILLIACIV, jointly developed by Burroughs, the Department of Defense and the University of Illi-nois, were representative of the �rst parallel computers. The Texas Instrument AdvancedScienti�c Computer (TI{ASC) and the STAR{100 of CDC were pipelined vector processorsthat demonstrated the viability of that design and set the standards for subsequent vectorprocessors. 8

www.manaraa.com

Early in the this third generation Cambridge and the University of London cooperatedin the development of CPL (Combined Programming Language, 1963). CPL was, accordingto its authors, an attempt to capture only the important features of the complicated andsophisticated ALGOL. However, like ALGOL, CPL was large with many features that werehard to learn. In an attempt at further simpli�cation, Martin Richards of Cambridge de-veloped a subset of CPL called BCPL (Basic Computer Programming Language, 1967). In1970 Ken Thompson of Bell Labs developed yet another simpli�cation of CPL called simplyB, in connection with an early implementation of the UNIX operating system.3.5 Fourth Generation (1972{1984)The next generation of computer systems saw the use of large scale integration (LSI { 1000devices per chip) and very large scale integration (VLSI { 100,000 devices per chip) in theconstruction of computing elements. At this scale entire processors will �t onto a single chip,and for simple systems the entire computer (processor, main memory, and I/O controllers)can �t on one chip. Gate delays dropped to about 1ns per gate.Semiconductor memories replaced core memories as the main memory in most systems;until this time the use of semiconductor memory in most systems was limited to registersand cache.During this period, high speed vector processors, such as the CRAY 1, CRAY X{MPand CYBER 205 dominated the high performance computing scene. Computers with largemain memory, such as the CRAY 2, began to emerge. A variety of parallel architecturesbegan to appear; however, during this period the parallel computing e�orts were of a mostlyexperimental nature and most computational science was carried out on vector processors.Microcomputers and workstations were introduced and saw wide use as alternatives to time{shared mainframe computers.Developments in software include very high level languages such as FP (functional pro-gramming) and Prolog (programming in logic). These languages tend to use a declarativeprogramming style as opposed to the imperative style of Pascal, C, FORTRAN, et al. In adeclarative style, a programmer gives a mathematical speci�cation of what should be com-puted, leaving many details of how it should be computed to the compiler and/or runtimesystem. These languages are not yet in wide use, but are very promising as notations forprograms that will run on massively parallel computers (systems with over 1,000 processors).Compilers for established languages started to use sophisticated optimization techniques toimprove code, and compilers for vector processors were able to vectorize simple loops (turnloops into single instructions that would initiate an operation over an entire vector).Two important events marked the early part of the third generation: the developmentof the C programming language and the UNIX operating system, both at Bell Labs. In1972, Dennis Ritchie, seeking to meet the design goals of CPL and generalize Thompson'sB, developed the C language. Thompson and Ritchie then used C to write a version of UNIXfor the DEC PDP{11. This C{based UNIX was soon ported to many di�erent computers,relieving users from having to learn a new operating system each time they change computer9

www.manaraa.com

hardware. UNIX or a derivative of UNIX is now a de facto standard on virtually everycomputer system. An important event in the development of computational science was thepublication of the Lax report. In 1982, the US Department of Defense (DOD) and NationalScience Foundation (NSF) sponsored a panel on Large Scale Computing in Science and Engi-neering, chaired by Peter D. Lax. The Lax Report stated that aggressive and focused foreigninitiatives in high performance computing, especially in Japan, were in sharp contrast to theabsence of coordinated national attention in the United States. The report noted that uni-versity researchers had inadequate access to high performance computers. One of the �rstand most visible of the responses to the Lax report was the establishment of the NSF super-computing centers. Phase I on this NSF program was designed to encourage the use of highperformance computing at American universities by making cycles and training on three(and later six) existing supercomputers immediately available. Following this Phase I stage,in 1984{1985 NSF provided funding for the establishment of �ve Phase II supercomputingcenters. The Phase II centers, located in San Diego (San Diego Supercomputing Center);Illinois (National Center for Supercomputing Applications); Pittsburgh (Pittsburgh Super-computing Center); Cornell (Cornell Theory Center); and Princeton (John von NeumannCenter), have been extremely successful at providing computing time on supercomputers tothe academic community. In addition they have provided many valuable training programsand have developed several software packages that are available free of charge. These PhaseII centers continue to augment the substantial high performance computing e�orts at theNational Laboratories, especially the Department of Energy (DOE) and NASA sites.3.6 Fifth Generation (1984{1990)The development of the next generation of computer systems is characterized mainly bythe acceptance of parallel processing. Until this time parallelism was limited to pipeliningand vector processing, or at most to a few processors sharing jobs. The �fth generationsaw the introduction of machines with hundreds of processors that could all be working ondi�erent parts of a single program. The scale of integration in semiconductors continued atan incredible pace | by 1990 it was possible to build chips with a million components | andsemiconductor memories became standard on all computers. Other new developments werethe widespread use of computer networks and the increasing use of single-user workstations.Prior to 1985 large scale parallel processing was viewed as a research goal, but twosystems introduced around this time are typical of the �rst commercial products to bebased on parallel processing. The Sequent Balance 8000 connected up to 20 processors toa single shared memory module (but each processor had its own local cache). The machinewas designed to compete with the DEC VAX{780 as a general purpose Unix system, witheach processor working on a di�erent user's job. However Sequent provided a library ofsubroutines that would allow programmers to write programs that would use more than oneprocessor, and the machine was widely used to explore parallel algorithms and programmingtechniques.The Intel iPSC{1, nicknamed \the hypercube", took a di�erent approach. Instead of10

www.manaraa.com

using one memory module, Intel connected each processor to its own memory and useda network interface to connect processors. This distributed memory architecture meantmemory was no longer a bottleneck and large systems (using more processors) could bebuilt. The largest iPSC{1 had 128 processors.Toward the end of this period a third type of parallel processor was introduced to themarket. In this style of machine, known as a data-parallel or SIMD, there are severalthousand very simple processors. All processors work under the direction of a single controlunit; i.e. if the control unit says \add a to b" then all processors �nd their local copy of aand add it to their local copy of b. Machines in this class include the Connection Machinefrom Thinking Machines, Inc., and the MP{1 from MasPar, Inc.Scienti�c computing in this period was still dominated by vector processing. Most man-ufacturers of vector processors introduced parallel models, but there were very few (two toeight) processors in this parallel machines.In the area of computer networking, both wide area network (WAN) and local areanetwork (LAN) technology developed at a rapid pace, stimulating a transition from the tra-ditional mainframe computing environment toward a distributed computing environment inwhich each user has their own workstation for relatively simple tasks (editing and compil-ing programs, reading mail) but sharing large, expensive resources such as �le servers andsupercomputers. RISC technology (a style of internal organization of the CPU) and plum-meting costs for RAM brought tremendous gains in computational power of relatively lowcost workstations and servers. This period also saw a marked increase in both the qualityand quantity of scienti�c visualization.3.7 Sixth Generation (1990 {)Transitions between generations in computer technology are hard to de�ne, especially asthey are taking place. Some changes, such as the switch from vacuum tubes to transistors,are immediately apparent as fundamental changes, but others are clear only in retrospect.Many of the developments in computer systems since 1990 reect gradual improvementsover established systems, and thus it is hard to claim they represent a transition to a new\generation", but other developments will prove to be signi�cant changes. In this sectionwe o�er some assessments about recent developments and current trends that we think willhave a signi�cant impact on computational science.This generation is beginning with many gains in parallel computing, both in the hardwarearea and in improved understanding of how to develop algorithms to exploit diverse, mas-sively parallel architectures. Parallel systems now compete with vector processors in termsof total computing power and most expect parallel systems to dominate the future. Com-binations of parallel/vector architectures are well established, and one corporation (Fujitsu)has announced plans to build a system with over 200 of its high end vector processors. Man-ufacturers have set themselves the goal of achieving teraops (1012 arithmetic operationsper second) performance by the middle of the decade, and it is clear this will be obtainedonly by a system with a thousand processors or more.11

www.manaraa.com

Table 2: Network SpeedsTransmission TimeName Speed 24-bit Color Bible Encyclopedia(bits/sec) Screen BritannicaT3 45,000,000 0.5 sec 1.2 sec 60 secT1 1,544,000 15 sec 36 sec 30 min56 kbps 56,000 7 min 16 min 13 hrs14.4 kbaud 14,400 0.5 hr 1 hr 2 daysWorkstation technology has continued to improve, with processor designs now using acombination of RISC, pipelining, and parallel processing. As a result it is now possibleto purchase a desktop workstation for about $30,000 that has the same overall computingpower (100 megaops) as fourth generation supercomputers. This development has sparkedan interest in heterogeneous computing: a program started on one workstation can �nd idleworkstations elsewhere in the local network to run parallel subtasks.One of the most dramatic changes in the sixth generation will be the explosive growthof wide area networking. Network bandwidth has expanded tremendously in the last fewyears and will continue to improve for the next several years. T1 transmission rates are nowstandard for regional networks, and the national \backbone" that interconnects regionalnetworks uses T3. Networking technology is becoming more widespread than its originalstrong base in universities and government laboratories as it is rapidly �nding application inK{12 education, community networks and private industry.A little over a decade after the warning voiced in the Lax report, the future of a strongcomputational science infrastructure is bright. The federal commitment to high performancecomputing has been further strengthened with the passage of two particularly signi�cantpieces of legislation: the High Performance Computing Act of 1991, which established theHigh Performance Computing and Communication Program (HPCCP) and Sen. Gore'sInformation Infrastructure and Technology Act of 1992, which addresses a broad spectrumof issues ranging from high performance computing to expanded network access and thenecessity to make leading edge technologies available to educators from kindergarten throughgraduate school. In bringing this encapsulated survey of the development of a computationalscience infrastructure up to date, we observe that the President's FY 1993 budget contains$2.1 billion for mathematics, science, technology and science literacy educational programs,a 43% increase over FY 90 �gures. 12

www.manaraa.com

4 The Modern High Performance ComputingEnvironmentThe �rst computer to be termed a \supercomputer" was the CDC 6600, introduced in1966. Later model CDC 6600s had a peak performance rate of 3 million oating pointoperations per second, or 3 Megaops (Mops). Computers of the 1990s are capable ofpeak performance rates of one Gigaop (one thousand Megaops). Teraop (one millionMegaops) performance rates are predicted by the turn of the century. Table 3 showsthe peak performance rate for some representative machines. With this rapid increase inperformance, it has long been recognized that the de�nition of the term supercomputer mustbe dynamic. More than just peak performance rates must be considered when designating acomputer as a super computer. Other factors that must be considered include memory sizeand memory bandwidth. Recently the term \supercomputer" has been displaced by the term\high performance computer" or \high performance computing environment". This shiftin terminology has resulted from the recognition that, in a computational science setting,when real problems are being tackled (rather than just CPU benchmarks) it is the entirecomputing environment that must o�er high performance, not just the CPU. In addition toa computer with a high computational rate and a large, fast memory, a high performancecomputing environmentmust include high speed network access, reliable and robust softwareand compilers, documentation and training and scienti�c visualization support.In today's high performance computing environment, a computational scientist's routineactivities rely heavily on the Internet. Activities include exchange of e-mail and interactivetalk or chat sessions with colleagues. Heavy use is made of the ability to transfer documentssuch as proposals, technical papers, data sets, computer programs and images. A networkedhigh performance computing environment provides the computational scientist access to awide array of computer architectures and applications. Using telnet to connect to a remotecomputer (on which one has an account) on the Internet enables the computational scientistto use all of the computational power and software applications of that remote machine.
13

www.manaraa.com

Table 3: Peak Performance Rates of Selected ComputersMachine Number of Processors Peak Performance (Mops)CDC 6600 1 3CDC 7600 1 10CRAY 1 1 160CYBER 205 1 400nCUBE/10 1024 500IBM 3090/VF 6 686CRAY X-MP 4 940CRAY Y-MP 8 2664CM-2 65536 20000CM-5References[1] Decker, J.F., Johnson, G.M., Computational Science: An Assessment and Projection,Proceedings of the 2nd International Conference on Computational Physics, Beijing,September 1993, World Scienti�c.[2] Goldstine, H. The Computer from Pascal to von Neumann. Princeton Uni-versity Press, 1972. [A detailed account of early developments in computing.Goldstine was himself a key figure in the ENIAC and EDVAC projects].[3] Hayes, J. P. Computer Architecture and Organization. McGraw-Hill, 1978. [Out ofdate now as a text on computer architecture, but it has a very nicesection on historical computers, including details on how Babbage'smachine used the method of finite differences to calculate functions].[4] Hodge, A. Alan Turing: The Enigma. Simon and Schuster, 1983. [A comprehensivebiography of Turing; Hodge is a mathematician who provides a satisfyingexplanation of Turing's contributions to that field as well as his workon computers and artificial intelligence].[5] Slater, R. Portraits in Silicon. MIT Press, 1987. [Biographical vignettes on over30 influential figures in computer science and the computer industry14

www.manaraa.com

from Babbage, Turing, and von Neumann to Seymour Cray, Bill Gates, andRoss Perot].[6] Wilson, K. G. Grand Challenges to Computational Science. Cornell University, May1987.

15

